

Overview of Gasoline Compression Ignition and

Background for VERIFI Hands-On simulations

Dr. Janardhan Kodavasal Postdoctoral Researcher, Energy Systems & ALCF

Acknowledgements

- Funding: DOE, VTO Program Managers Gurpreet Singh, Leo Breton
- Computing resources Argonne LCRC/ALCF
- ALCF: Marta Garcia, Kevin Harms, Joe Insley
- ES: Chris Kolodziej, Steve Ciatti, Sibendu Som, Yuanjiang Pei
- CSI: Priyesh Srivastava, Shaoping Quan, Keith Richards

Gasoline Compression Ignition (GCI) at Argonne*

87 octane gasoline (no ethanol)

1.9 L Euro IV production 4cylinder GM diesel engine

- Early direct injection of gasoline sequential autoignition
- Run engine on 87 octane gasoline over entire speed/load range
- CFD optimize control knobs for stable combustion

*experiments by Kolodziej et al. SAE 2014-01-1302

Engine Specifications

Cylinders	4
Geometric CR	17.8
Effective CR (CFD)	17.5
Bore (mm)	82
Stroke (mm)	90.4
Connecting Rod Length (mm)	145.4
IVC/EVO(° aTDC)	-132 / 116
Number of injector nozzle holes	7
Nozzle hole diameter (µm)	141
Nozzle inclusion angle (deg.)	148
Injection pressure (bar)	250

Traditional Diesel Combustion

Low ignition delay

Non-premixed

High Soot and NOx

Gasoline Compression Ignition

Early injection
SOI at -15 to -40°aTDC

Long ignition delay
Partially premixed
Distributed ignition

Gasoline Compression Ignition

Challenges

Low load operation a challenge!

Hard to ignite gasoline at low loads/fueling

Can injection be used to control/enhance reactivity?

Injection timing versus minimum fueling possible

CFD Simulation setup

Largest LTC simulation to our knowledge with peak cell count of 30 million cells

Base mesh (up to SOI)	0.60 mm
Embedding/AMR (up to SOI)	2 levels on vel. and temp.
Minimum cell size (up to SOI)	0.15 mm
Fixed mesh from SOI (using gridscale)	0.15 mm
Cells (TDC)	9 million
Peak cell count	30 million
Combustion model	SAGE in every cell
Turbulence Model	LES (Dynamic Structure)

Cell count as a function of crank angle

CFD Simulation setup

RPM	1500
T _{liner} (K)	380
T _{head} (K)	400
T _{piston} (K)	400
Simulation start (°aTDC)	-132
Simulation end (°aTDC)	45

Kinetic Mechanism (PRF)	Liu et al. (48 sp. 152 rxn.)
Fuel Surrogate composition for simulations	
Isooctane (% by mass)	87
n-heptane (% by mass)	13

Numerical SOI sweep – Effect of injection timing

Parameter	Value
Fuel mass (mg)	9.68
Inj. Dur. (deg.)	10.08
T _{IVC} (K)	397
P _{IVC} (bar)	1.41
Ф	0.24
Overall EGR	10%

- Keep fueling constant as well as injection duration
- Constant IVC conditions and boundary conditions
- Only vary SOI timing
- Ignition timing used as metric for low-load reactivity

CFD captures experimental trend

EXPERIMENTS*

13 Min. Fueling for 3% Experiments **COV IMEP** (SAE 2014-01-1302) 12 Fueling [mg/cycle] Optimum phasing from experiments is at SOI = -30° 10 9 -45 -35 -30 -25 -20 -15 -50 -40

CFD SIMULATION

Variable Fueling: 9.4 – 11.7mg /cycle

SOI [deg. aTDC]

Fixed Fueling: 9.68 mg /cycle

*Experiments : Kolodziej et al, SAE 2014-01-1302

1500 RPM, 250 bar P_{ini}

CFD Simulation for hands-on

- Start from restarts ~ CA10
- Run 1 to 1.5° in 3 hours
- 2048 processors/case
- 4 cases
- Total: 8192 procs
- 1 mid-plane of MIRA
- 26 participants
- 13 racks on MIRA

Domain partitioning – fluid mechanics

Domain partitioning – fluid mechanics

Running on 2048 processors – do we scale well?

We are at 93% scaling efficiency on 2048 processors (cores) – pretty good...

Role of chemistry load balancing in scaling

Better chemistry load balancing by Argonne/CSI was key VERIFI Workshop - Hands-on 11/13/2014 More details in Kevin's presentation...

CFD captures experimental trend

Variable Fueling: 9.4 – 11.7mg /cycle

Fixed Fueling: 9.68 mg /cycle

*Experiments : Kolodziej et al, SAE 2014-01-1302

1500 RPM, 250 bar P_{ini}

Effect of injection timing

Effect of late injection

Let's compare -30° with the later injection timing of -24°

Effect of later injection – Reduced residence time

Less time for fuel to breakdown, and react by TDC

Effect of later injection – Later ignition

Later CA10 timing is related to delay in SOI

Effect of early injection

Let's compare -30° with the earlier injection timings of -35° and -36°

Effect of early injection – Fuel in squish

- Fuel in squish is less reactive higher rate of heat loss
- Overall reactivity of mixture is reduced ignite later

Effect of early injection – Later ignition

Ignite later for the early injection cases (SOI = -36° and -35°)

Effect of early injection – Burn slower

- Fuel in squish burns slower lowering the overall rate of heat release
- Further reduces combustion stability

Explanation for CA10 vs. SOI trend

- Inject late less time for fuel to breakdown and autoignite
- Inject early fuel in squish, less reactive, ignites later, burns slower

Summary of Insights and Future Work

- CFD captures experimental trend in combustion stability vs. SOI
- Optimum SOI timing identified from simulations
 - Injecting earlier than optimum fuel in squish
 - Injecting later than optimum reduction in residence time
- Insights
 - Use smaller nozzle angle, say 120°
 - Study effect of injection pressure and swirl
- Future work:
 - Optimization of injection pressure, inclusion angle, swirl using CFD
 - Open-cycle, multi-cylinder, multi-cycle simulations
 - HPC Front: ~ 100 million to 1 billion cells, 1 rack of Mira (16K processors)

Thank you

Janardhan Kodavasal, Ph.D.
Argonne National Laboratory
jkodavasal@anl.gov
www.verifi.anl.gov